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Introduction
To generate phase conjugate (PC) wave in four-wave 
mixing two schemes are used: scheme with opposing 
pump waves and scheme with concurrent pump waves 
[1, 2]. The choice of first or second scheme depends 
on the problem being solved and requirements im-
posed on the PC wave. In four-wave mixing in scheme 
with opposing pump waves PC of the incident (signal) 
wave is complete. The PC wave (object wave) propa-
gates towards the signal wave and when it passes again 
through the same optically inhomogeneous medium 
through which the signal wave passed the phase dis-
tortions introduced into the signal wave are compen-
sated [3].
In the scheme with concurrent pump waves only the 
transverse component of the wave vector of the inci-
dent wave is reversed. The PC wave propagates in the 
direction of the signal wave. It may be preferable, for 
example, to compensate for phase distortions arising 
when the signal wave propagates through one optical-
ly inhomogeneous medium and the PC wave propa-
gates through another optically inhomogeneous me-
dium the parameters of which are same or close to the 
parameters of the first medium [4].

Both four-wave mixing schemes with opposing and 
concurrent pump waves are used for image processing 
and analysis, in quantum cryptography, for ultra-high-
speed optical signal processing, etc. [5–7].
Up to present time, the PC quality analysis has been car-
ried out for four-wave radiation converters with concur-
rent pump waves in the medium with Kerr, resonance, 
thermal nonlinearities [8–10]. In recent years, the pos-
sibility of using media containing particles of micro- and 
nanosize (colloidal solutions, suspensions, etc.) for real-
ization of four-wave mixing has been actively discussed 
[11–16]. When liquids containing nanoparticles are 
used as nonlinear media a significant influence on the 
spatial structure of the PC wave can be provided by such 
physical processes as electrostriction and Dufour effect 
[17–19]. In this paper, we analyze spatial selectivity of 
the four-wave radiation converter with concurrent pump 
waves in the transparent liquid filled with nanoparticles 
the density of which is equal to the density of liquid.

1. Four-wave mixing model
We consider the typical scheme of degenerate four-
wave mixing ω+ω–ω=ω with concurrent pump waves in 
a plane layer thickness  (fig. 1).
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Fig. 1. Four-wave mixing scheme with concurrent pump  
waves

In the medium two plane pump waves with complex ampli-
tudes ( ) ( ) ( )1,2 1,2 1,2expA r A z ik r= −



 

  ( ( )1,2 1,2 1,2, zk kκ




 are 
the wave vectors of the pump waves, z is the longitudi-
nal component of the radius vector r ) propagate and 
the signal wave with complex amplitude A3 propagates. 
We assume that the wave vectors of the pump waves lie 
in the XZ-plane (the plane of the pump waves). Inter-
ference of the pump waves and the signal wave leads to 
a change in the radiation intensity in space and, due to 
electrostriction, to the emergence of the nanoparticles 
concentration flux. Due to Dufour effect the concentra-
tion flux changes the temperature (δT), and hence the 
refractive index of the medium ( )( )n dn dT Tδ = δ . As a 
result of diffraction of the pump waves on the refractive 
index gratings, the object wave with complex amplitude 
A4 is generated.
The initial Helmholtz equation describing four-wave 
mixing of radiation in the transparent nonlinear me-
dium has the form [17, 18]

( )
2

2 2

0

2 0k dnk T A A
n dT

∗ 
∇ + + δ + = 

 
 (1)

where 
4

1
j

j
A A

=

= ∑ , 0k n c= ω , ω is the cyclic frequency,

n0 is the average value of the refractive index, c is the 
speed of light.
Equation (1) is supplemented by a system of material 
equations for the concentration (δC) and temperature 
variation [11, 19]

2 2
22

C D C I
t

∂δ
= ∇ δ + γ∇

∂
, (2)

2 2
11 12p

Tc D T D C
t

∂δ
ν = ∇ δ + ∇ δ

∂
. (3)

Here, D11, D22, D12 and γ are the  coefficients of ther-
mal conductivity, diffusion, Dufour and electrostric-
tion respectively, cp is the specific heat of matter, ν 
is the density of matter, I = AA* is the intensity of 
radiation.

2. Four-wave mixing considering the 
temperature gratings arising from 
interference of the pump waves  
and the signal wave

For steady-state (stationary) regime, from the system 
of material equations (2) – (3) we obtain equation re-
lating the temperature variation to the intensity of the 
interacting waves

2 212

11 22

DT I
D D
γ

∇ δ = ∇ . (4)

In the pump waves approximation ( )1,2 3,4>>A A  with 
a small conversion coefficient ( )1,2 3,4>>A A

 
the in-

tensity of radiation propagating in the nonlinear me-
dium can be written as follows

0 1 3 1 3 2 3 2 3I I A A A A A A A A∗ ∗ ∗ ∗= + + + +  (5)

where 0 1 2I I I= + , 1,2 1,2 1,2I A A∗= .
Then the temperature variation can be represented as 
a sum of rapidly (δT31, δT32) and slowly (δT0) varying 
components depending on the coordinates
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( ) ( )

0 31 31
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T r T z T r T r
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∗

∗

δ = δ + δ + δ +

+δ + δ

  

 

 (6)

We expand the signal and object waves into plane 
waves and the rapidly varying components of the tem-
perature variation into harmonic gratings

( ) ( ) ( ), expj j j j jz jA r A z i ik z d
∞

−∞

= κ − κ ρ − κ∫
   

 , (7)

( ) ( ) ( )31,2 31,2 1,2 1,2 1,2, expT T TT r T z i d
∞

−∞

δ = δ κ − κ ρ κ∫
   

 . (8)

Here, jA  is the spatial spectrum of the jth wave, 31,2Tδ   
are the spatial spectra of the temperature gratings, 

( ),j jx jyκ κ κ


 and kjz are the transverse and longitudi-
nal components of the wave vector jk



, j=3,4, jk k=


, 
 ( )1,2 1,2 1,2,T T x T yκ κ κ


 are the wave vectors of the tem-
perature gratings, ( ),x yρ



 is the transverse component 
of the radius vector.
As shown in [9, 10], when the boundary condition 

( )4 4 , 0 0A zκ = =


  is performed and only the tempera-
ture gratings are recorded in the nonlinear medium the 
spatial spectrum of the object wave on the back edge 
of the nonlinear layer is related to the spectra of the 
temperature gratings by the following expression
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Expression (9) is written for quasicollinear propaga-
tion of the interacting waves under condition 

4 1 2 2 1T Tκ = κ + κ = κ + κ
    

.
Expression for the spatial spectrum of the object wave 
is supplemented by a system of differential equations 
derived from the material equation (4) describing the 
change in spatial spectra of the temperature gratings 
along the thickness of the nonlinear layer

( )
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   (10)

where ( ) ( )30 3 30 3 , 0A A zκ = κ =
 

  , 1,2 1,2 3Tκ = κ − κ
  

.
If the temperature is constant on the edges of the nonlin-
ear layer ( ) ( )( )31,2 1,2 31,2 1,2, 0 , 0T TT z T zδ κ = = δ κ = =

 

 

  
the solutions of equations (10) are
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Substituting (11) into (9) and integrating over the z 
coordinate we obtain the spatial spectrum of the object 
wave on the back edge of the nonlinear medium

( ) ( ) ( )4 4 41 4 42 4, , ,A z A z A z′ ′ ′κ = = κ = + κ =
  

  

   . (12)

Here,

( )

( ) ( )

( ) ( ){ }(
( ){ }
( )

( ) ( ){ }
( )

12
41,2 4

0 11 22

1

10 20 30 3 1,2

1,2 3 1,2

1,2 2,1 4

1,2 2,1 4

1,2 3 1,2

1,2 2,1 4

,

2sinh( )

exp exp

exp 1

exp exp

exp

−∗

γ′ κ = = − ×

× κ κ ×

 × − − − −κ × 

 κ − − − × +
κ − −

 + − − − κ × 

− κ + −
×









  



 



 

T

z z T

T z z

T z z

z z T

T z z

k D dnA z i
n D D dT

A A A

i k k

i k k

i k k

i k k

i k k{ }
( )

( )

1,2 2,1 4

1

1

exp 1 ,−

 −   −κ + − 


 − ∆ − ∆ − 





T z zi k k

i i

 (13)

( )1 2 3 4 z
k k k k∆ = + − −
     

is the projection of the wave 
mismatch on the Z-axis, 1,2 1,2T Tκ = κ



. In the paraxial 
approximation ( )( )1 4 2 4 k∆ = κ − κ κ − κ

   

.
The spatial spectrum of the object wave is the sum of 
the spatial spectra of two waves one of which arises 
when the first pump wave diffracts on the tempera-

ture grating 32Tδ   and the other arises when the second 
pump wave diffracts on the temperature grating 31Tδ  . 
If one of the pump waves, for example A2, is incoherent 
with the first pump wave and the signal wave then one 
temperature grating 31Tδ   is recorded in the nonlinear 
medium, and the spatial spectrum of the object wave 
is determined by the spatial spectrum of the wave 41A′ .
In this and the following section we’ll assume that the 
signal wave is a wave from a point source located on 
the front edge of the nonlinear medium ( )( )30 3 1A κ =



 .
In fig. 1 the characteristic modules of the spatial 
spectrum of the object wave are adduced in the pres-
ence of one (fig. 2a) and two (fig. 2b) temperature 
gratings provided that the pump waves fall on the 
nonlinear medium at the equal angles ( )1 2κ = −κ

 

. 
Dependence of the projection of the wave mismatch on 
the Z-axis on the transverse components of the wave 
vectors of the interacting waves (the phase-matching 
condition) determines the general form of the spatial 
spectrum module of the object wave [8], and the pres-
ence of electrostriction and Dufour effect determines 
the emergence of the dips in the spectrum module the 
positions of which correspond to the directions of the 
pump waves propagation.
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When one temperature grating 31Tδ   is recorded and 
only phase-matching condition is considered in the 
plane of the pump waves ( )( )4 2 4 2κ κ = κ κ

 

 two max-
ima are observed in the spatial spectrum of the ob-
ject wave, the positions of which are defined by the 
spatial frequencies of the pump waves 1,2 1,2κ = κ



. 
 As follows from (11) considering, in addition to the 
phase-matching condition, the electrostriction phenom-
enon and Dufour effect leads to the absence of the tem-
perature grating at 1 0Tκ →  and to the emergence of the 
dip instead maximum in the spatial spectrum module of 
the object wave at the spatial frequency of the second 
pump wave (fig. 3a). At the fixed incidence angle of the 
first pump wave the rotation of the second pump wave 
shifts the dip position in the spatial spectrum by the 
amount of rotation.
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The propagation direction of the pump waves doesn’t in-
fluence the spatial spectrum module of the object wave 
in the dip area.
When two temperature gratings are recorded in the 
plane of the pump waves two dips are observed in 
the spatial spectrum module of the object wave, the 
positions of which are determined by the spatial fre-
quencies of the pump waves (fig. 3b). In contrast with 

recording of one temperature grating when the mini-
mum value of the spatial spectrum module is zero in 
the dip, when two gratings are recorded the minimum 
value of the spatial spectrum module is not zero in the 
dip and it depends on the incidence angle of the pump 
waves on the nonlinear medium. The nonzero value of 
the spatial spectrum module in the dip is related to the 
recording of two temperature gratings in the medium. 
Thus, at the dip point ( )4 1κ = κ

 

 the maximum value of 
the spatial spectrum of the object wave ( )42 4 ,A z′ κ =





  
is superimposed on the zero value of the spatial spec-
trum of the object wave ( )41 4 ,A z′ κ =





 .
We introduce a parameter characterizing the visibility 
of the dip in the spatial spectrum module of the object 
wave

4 max 4 min

4 max 4 min

A A
V

A A
−

=
+

 (14)

where ( )4 min 4 4 1,A A z′= κ = κ =
 



  is the value 
of the spatial spectrum module in the dip (on 
the spatial frequency of the first pump wave), 

( )4 max 4 4 max ,A A z′= κ =




  is the largest value of the 
spatial spectrum module in the dip area under the 
condition 4 max 1κ > κ , 4 max 4 maxκ = κ



 is the spatial 
frequency at which the largest value of the spatial 
spectrum is achieved.
To analyze the spatial selectivity of the four-wave 
radiation converter in the plane of the pump waves 
we introduce the dip width (∆κ)

41 42x x∆κ = κ − κ
 

(15)
where κ41x and κ42x are the spatial frequencies in the 
dip area which are found from the solution of equation

( ) 4 max 4 min
4 41,2 41,2, 0,

2x y
A A

A z
+′ κ κ = = =

 . (16)

When the pump waves fall on the nonlinear medium 
at the equal angles, the increase of the incidence angle 
leads to a monotonic decrease of the value A4max. The 
visibility (fig. 4, curve 1) and the dip width in the spa-
tial spectrum module of the object wave (fig. 4, curve 
2) is decreased.
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The change of the spatial spectrum phase of the object 
wave (ϕ) considering both one and two temperature 
gratings are determined by the projection of the wave 
mismatch on the Z-axis and at 1 2κ = −κ

 

 is described 
well by a parabolic law

( ) 2 2
4 1 4( )

2k
ϕ κ = κ − κ
 

. (17)

3. Time evolution  
of the spatial spectrum of the object wave

In the case of nonstationary four-wave mixing the 
temporal dynamics of the particle concentration grat-
ings influence significantly on the time dependence of 
the spatial spectrum of the object wave [19].
Like the temperature variation we represent the con-
centration variation as a sum of rapidly (δC31, δC32) 
and slowly (δC0) varying components depending on 
the coordinates
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 (18)

We expand the rapidly varying components of the con-
centration into harmonic gratings
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 (19)

Here, 31,2Cδ   are the spatial spectra of the concentra-
tion gratings caused by interference of the signal wave 
and the pump waves, ( )1,2 1,2 1,2,C C x C yκ κ κ



 are the wave 
vectors of these gratings.
We’ll assume that the spectra of the temperature grating like 
the spectra of the concentration gratings change over time.
Considering expansion of the temperature and con-
centration gratings into harmonic gratings the system 
of equation (2) – (3) can be rewritten as follows
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Equations (20) – (21) are written under the condition 

1,2 1,2C Tκ = κ
 

.

We’ll find the solution of the system of equation (20) 
– (21) in the form of Fourier series
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where C01,2, Cm1,2, Ts1,2 are the coefficients of series ex-
pansion.
Substituting (22) into the material equa-
tions (20) – (21) in the absence of the parti-
cle flux through the edges of the nonlinear layer 

( ) ( )( )31,2 31,2
0

0
z z

d C dz d C dz
= =

δ = δ =


   

with considering the initial conditions 
( )31,2 1,2 , , 0 0CC z tδ κ = =


  we find the coefficients 
C01,2, Cm1,2. Knowing the expansion coefficients of 
the spectra of the concentration gratings in series 
with the temperature unchanged on the edges of 
the nonlinear layer, with considering the initial 
conditions ( )31,2 1,2 , , 0 0TT z tδ κ = =



  we find the co-
efficients Ts1,2, and hence, time evolution of the 
spatial spectra of the temperature gratings in the 
form [19]
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For stationary recording regime of the tempera-
ture gratings (t→∞) expressions for 31,2Tδ   ob-
tained from (23) coincide with expressions for the 
spatial spectra of the temperature gratings (11).
Substituting (23) into (9), integrating over the z 
coordinate we obtain analytic expression for the 
time dependence of the spatial spectrum of the 
object wave as the sum of the spatial spectra of 
two waves
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 (24)

Expressions (13) and (24) describing the spatial 
spectra of the object waves on the back edge of the 
nonlinear layer in the scheme with concurrent pump 
waves coincide formally with similar expressions 
for the spatial spectra of the degenerate and non-
degenerate four-wave radiation converters on the 
front edge in the scheme with opposing pump waves 
[18, 19]. Expressions for the projection of the wave 
mismatch ∆ and for the difference of the projections 
of the wave vectors of the interacting waves on the 
Z-axis change.

In fig. 5 temporal dynamics of the spatial spec-
trum of the object wave in the plane of the pump 
waves is represented under the condition that 
the amplitudes of the pump waves are unchanged 
over time ( )( )1,20A t const= . Seen that the forma-
tion of the dips in the spatial spectrum module 
caused by the presence of electrostriction phe-
nomenon and Dufour effect is delayed compared 
to the formation of the spatial spectrum module 
caused by the nonzero projection of the wave 
mismatch on the Z-axis. This is due to the depen-
dence of the recording time of the temperature 
gratings on the spatial frequencies κT1,2. In the 
dip area two temperature gratings are recorded, 
the recording time of one of which is determined 
by the spatial frequency of the pump wave, and 
the recording time of the second temperature 
grating tends to “infinity”. The addition of the 
spatial spectra of two object waves correspond-
ing to these gratings leads to a delay in the for-
mation of the dips.
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Fig. 5. Spatial spectra of the object wave at different time 
points in the plane of the pump waves with considering two 
temperature gratings at  5000k = ,  1 2 0.03x xk kκ = − κ = , 

5
22 11 2 10pc D D −ν = × ,  2 5

22 10tD −=  (1),  410−  (2),  310−  
(3),  110−  (4)

The visibility of the dip in the spatial spectrum mod-
ule of the object wave increases over time reaching a 
steady-state value (fig. 6).
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Fig. 6. Time dependence of the visibility of the dip at 

5000k = ,  5
22 11 2 10pc D D −ν = × ,  1 2 0.01x xk kκ = − κ =  

(1),  0.03  (2), 0.05  (3)

To characterize time dynamics of the dip we intro-
duce the formation time of the dip (∆t) as the time 
during which the visibility reaches a value of 10% 
then with increasing of the incidence angle of the 
pump waves on the nonlinear medium the normalized 
formation time of the dip increases and for the inci-
dence angles 1 2 0.02x xk kκ = − κ = , 0.03, 0.04 rad 
is 2 4 4 3

22 3.445 10 , 6.49 10 , 1.077 10tD − − −∆ = × × ×  re-
spectively.
The rate of the time change of the visibility of the dip 
in a range of values from 10 to 20% decreases with 
increasing of the incidence angle of the pump waves.

4. Four-wave mixing  
at large conversion coefficients

Let us consider stationary concurrent four-wave mix-
ing in the transparent two-component medium con-
sidering the fact that the intensity of the object wave is 
comparable or even larger than the intensity of the sig-
nal wave (regime of the large conversion coefficients 
is realized). In this case it’s necessary to consider the 
temperature gratings that arise when the object wave 
interferes with the pump waves.
In expressions for the intensity and the temperature 
variation (5) – (6) the terms 2 4 2 4 1 4 1 4A A A A A A A A∗ ∗ ∗ ∗+ + + , 
 42 42 41 41T T T T∗ ∗δ + δ + δ + δ  are added respectively.
The rapidly varying in space components of the tem-
perature ( )42,1T rδ



, as well as ( )31,2T rδ


, we expand 
into harmonic gratings.

( ) ( )

( )

42,1 42,1 3,4

3,4 3,4

,

exp .

T

T T

T r T z

i d

∞

−∞

δ = δ κ ×

× − κ ρ κ

∫




  

 (25)

Here, 42,1Tδ   are the spatial spectra of the temperature 
gratings caused by interference of the object wave and 
the pump waves, ( )3,4 3,4 3,4,T T x T yκ κ κ



 are the wave vec-
tors of these gratings.
Equations describing changes in the spatial spectra of 
the signal and object waves and the spatial spectra of 
the temperature gratings under quasicollinear propa-
gation of the interacting waves take the form

( ){
( ) ( )
( ) }

3
31 42 10

0

1 3 32 41 20

2 3

exp

exp 0,

z z

z z

dA k dni T T A
dz n dT

i k k z T T A

i k k z

∗

∗

′
+ δ + δ ×

 × − − + δ + δ × 

 × − − = 



 

   (26)
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1 4
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exp 0,

z z
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′
+ δ + δ ×

 × − − + δ + δ × 
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2 12

1,2 31,2 1,2 1,202
11 22
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22
1,2 1,2 3 3 3
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exp 2

, ,

T T

z z z z

T z z

Dd T z A
D Ddz

di k k z i k k
dz

k k A z∗

  γ
− κ δ κ = − × 
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 ′+ κ + − κ
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 (29)

Here, ( ) ( ) ( )3 3 3 3, , expA z A z P z′  κ = κ  
 

  , 3,4 3,4T Tκ = κ =


2,1 4= κ − κ
 

.
In fig. 7 the dependencies of the amplitude 
conversion coefficient 4 max 30T A A∗=   and the 
dip half-width ( )1 2 41 1 41 1,x x x x∆κ = κ − κ κ > κ  
on the normalized intensity of the pump waves 

( )( )12 1 0 11 22G k D dn dT I n D D= γ  obtained by numeri-
cal analysis of the system of equations (26) – (29) are 
adduced at the equal intensities of the pump waves (I1 
= I2). The increase in the intensity of the pump waves 
leads to a linear increase in the amplitude conversion 
coefficient while the dip half-width doesn’t change 
within 4± %. The accuracy of finding the dip half-
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width has been determined by the error in calculating 
the position of the largest value of the spatial spec-
trum module. A similar character of the dependence 
of the amplitude conversion coefficient on the inten-

sity of the pump waves is observed for the four-wave 
radiation converter with concurrent pump waves on 
thermal nonlinearity [10].
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Fig. 7. Dependencies of the conversion coefficient (1) and the dip half-width (2) on the intensity of the first pump wave at 
5000k = ,  3

1 2 10x xk k −κ = − κ = ,  1 2I I=

Conclusion
Analytical expressions that relate the spatial spectra of 
the object and signal waves are obtained for stationary 
and nonstationary regimes of degenerate four-wave 
mixing in the transparent two-component medium 
with concurrent pump waves with the small conver-
sion coefficient. Established that the phase matching 
condition determines the general form of the spatial 
spectrum module of the object wave, and the presence 
of the electrostriction phenomenon and Dufour ef-
fect determines the emergence of the dips in the spa-
tial spectrum module whose positions correspond to 
the propagation directions of the pump waves. The 
visibility of the dips increases over time reaching the 
steady-state value. With increasing of the incidence 
angle of the pump waves on the nonlinear medium the 
formation time of the dip increases and its visibility 
decreases.
The intensity grows of the pump waves at I1 = I2 leads 
to the increase in the amplitude conversion coefficient 
according to a linear law while the dip half-width is 
constant.
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